Unstabilized Hybrid High-order Method for a Class of Degenerate Convex Minimization Problems

نویسندگان

چکیده

The relaxation in the calculus of variation motivates numerical analysis a class degenerate convex minimization problems with non-strictly energy densities some convexity control and two-sided $p$-growth. minimizers may be non-unique primal variable but lead to unique stress $\sigma \in H(\operatorname{div},\Omega;\mathbb{M})$. Examples include p-Laplacian, an optimal design problem topology optimization, convexified double-well problem. approximation by hybrid high-order methods (HHO) utilizes reconstruction gradients piecewise Raviart-Thomas or BDM finite elements without stabilization on regular triangulation into simplices. application this HHO method allows for $H(\operatorname{div})$ conforming $\sigma_h$. main results are a~priori posteriori error estimates $\sigma-\sigma_h$ Lebesgue norms computable lower bound. Numerical benchmarks display higher convergence rates polynomial degrees adaptive mesh-refining first superlinear guaranteed bounds.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence of Adaptive Fem for a Class of Degenerate Convex Minimization Problems

A class of degenerate convex minimization problems allows for some adaptive finite element method (AFEM) to compute strongly converging stress approximations. The algorithm AFEM consists of successive loops of the form SOLVE→ ESTIMATE→ MARK→ REFINE and employs the bulk criterion. The convergence in L ′ (Ω;Rm×n) relies on new sharp strict convexity estimates of degenerate convex minimization pro...

متن کامل

A Bundle Method for a Class of Bilevel Nonsmooth Convex Minimization Problems

We consider the bilevel problem of minimizing a nonsmooth convex function over the set of minimizers of another nonsmooth convex function. Standard convex constrained optimization is a particular case in this framework, corresponding to taking the lower level function as a penalty of the feasible set. We develop an explicit bundle-type algorithm for solving the bilevel problem, where each itera...

متن کامل

A proximal-based decomposition method for convex minimization problems

This paper presents a decomposition method for solving convex minimization problems. At each iteration, the algorithm computes two proximal steps in the dual variables and one proximal step in the primal variables. We derive this algorithm from Rockafellar's proximal method of multipliers, which involves an augmented Lagrangian with an additional quadratic proximal term. The algorithm preserves...

متن کامل

A Quasi-Newton Penalty Barrier Method for Convex Minimization Problems

We describe an infeasible interior point algorithm for convex minimization problems. The method uses quasi-Newton techniques for approximating the second derivatives and providing superlinear convergence. We propose a new feasibility control of the iterates by introducing shift variables and by penalizing them in the barrier problem. We prove global convergence under standard conditions on the ...

متن کامل

A Bundle Method for Solving Convex Non-smooth Minimization Problems

Numerical experiences show that bundle methods are very efficient for solving convex non-smooth optimization problems. In this paper we describe briefly the mathematical background of a bundle method and discuss practical aspects for the numerical implementation. Further, we give a detailed documentation of our implementation and report about numerical tests.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Numerical Analysis

سال: 2021

ISSN: ['0036-1429', '1095-7170']

DOI: https://doi.org/10.1137/20m1335625